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Analyticul laboratories, including those
specializing in cereals analysis, rou-
tinely apply quantitative tests whose levels
of precision are traced to documented ex-
periments that form the basis of each test.
Such experiments are typically known as
collaborative studies, interlaboratory stud-
ies, or “ring tests.” The primary purpose of
a collaborative study is to document and
demonstrate the precision and, to a lesser
extent, the accuracy of a chemical proce-
dure that measures the concentration or con-
tinuum response of an ingredient, element,
chemical compound, toxin, or property.
Under the direction ot the AACC Approved
Methods Committee, the association has an
established policy (for more than 20 years)
of offering a method approved status after
the method has undergone the rigor of a col-
laborative study. Approved methods are the
backbone of AACC's analytical program
and can be purchased from the association
in either print or electronic format (1).
Briefly, this article is designed to provide
ashort primer on the nature of the collabora-
tive study. AACC has generally adopted the
guidelines of AOAC INTERNATIONAL
(AOACI) (2). Both societies signed a mem-
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mation and does not imply endorsement or recom-
mendation by the USDA.

This article is in the public domain and not copyrightable.
It may be freely reprinted with customary crediting of the
source. American Association of Cereal Chemists, Inc.,
2005.

orandum of understanding several years
ago on the sharing of each other’s methods.
AOACT’s guidelines stem from an initial
workshop of the International Union of
Physical and Applied Chemists (IUPAC)
held in Geneva, Switzerland, in 1987 (5).
The guidelines have since been updated
at least twice by IUPAC during the 1990s.
Greater detail on the design and execution
of collaborative studies can be found on
AOACT’s website (www.aoac.org) (3).

We begin by describing the basic criteria
for a collaborative study and then explain
the statistical definitions for the two terms
(repeatability and reproducibility) that de-
fine the precision of a method and provide
examples of how these are applied to cereals
tests. We continue with a discussion of the
generalization of the statistical procedure
in terms of analysis of variance (ANOVA)
and user-friendly software that is currently
available at no charge to the analyst.

Collaborative Studies

A collaborative study consists of a number
of participating analytical laboratories that
each follow a defined set of instructions on
the analysis of a common set of laboratory
samples. The work is coordinated by, using
the parlance of AOACI, the “study director”
(Fig. 1). At a minimum, eight valid collabo-
rating laboratories performing quantitative
chemical analysis are needed to maintain
a reasonable statistical confidence interval
for reporting the precision of a method. It is
generally recommended that several more
laboratories be included than the minimum
number as a guard against unforeseen cir-
cumstances, such as laboratories that are un-
responsive, that fail to rigidly follow written
directions, or that make identifiable mistakes
in the procedure. Collaborators are defined as
unique in both person and physical location.

Fig. 1. Collaborative study design.

As a collaborating laboratory, a minimum
of five different “materials” are analyzed
for the constituent or property of interest
in accordance with the set of instructions
from the study director. The definition of
~different materials” is somewhat arbitrary.
The purpose of requiring a minimum of five
different materials is to instill a degree of
robustness in the method. Often, different
materials can be different major ingredients
in a formulation, such as wheat, barley, or
corn in mixed meals. In a narrower sense,
the materials may in fact be more botani-
cally similar, such as a method for ash
content that is applicable to hard and soft
classes of wheat.

Keys to a Successful Collaborative
Study

One of the unique aspects of a collabora-
tive study is the number of scientists and
laboratories that become involved and have
a stake in the study’s success. Prospective
study directors are strongly advised to care-
fully design procedures that have a high
probability of success, to avoid the inci-
dence of ill will, which can condemn the
study, and, even more problematic, the no-
tion of collaborative studies in general. The
characteristics of a successful collabora-
tive study can be summarized in six items
(Sidebar).

Traditionally, a collaborative study in-
volving a particular procedure has been
performed only after years of experience by
at least one laboratory (preferably the study
director’s), during which time the rugged-
ness ot the procedure has been examined.
The one-laboratory-leader approach is rap-
idly being replaced, however by a consen-
sus approach, in which interested parties
review all applicable methods and choose
the best one.
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Ruggedness of Procedure. By “rugged-
ness,” we mean that the procedure has been
examined for the effect of the variation of
typical experimental conditions that exist in
analytical laboratories, such as those caused
by different sources of reagents, equip-
ment, temperature, pressure, and humidity.
A rugged procedure is one that has a toler-
ance for the variation in conditions that can
be expected from laboratory to laboratory.

Writing a Protocol. Preliminary testing
may include an examination of the speci-
ficity of the procedure and how it is af-
fected by contaminants, additives, and trace
ingredients that are bound to occur in com-
mercial process settings. A carefully writ-
ten protocol, which consists of the method
instructions for collaborators and the com-
plete study design for the committee (such
as the AACC Approved Methods Commit-
tee) overseeing the study is essential to the
study’s success. The method instructions
should be a stand-alone set of directions,
complete with specification of glassware
sizes, buffer solution preparation, calcula-
tion constants, and any other resources that
an experienced analyst would otherwise need
to complete the procedure.

Pilot Study. Because of the size of the
undertaking, collaborative studies are often
preceded by a pilot study, in which a few
laboratories are asked to perform the pro-
cedure. These laboratories may become col-
laborators in the ensuing study, although
the results of the pilot study are not to be
used in the latter. The purpose of the pilot
study is to uncover unforeseen sources of
variation in the procedure and to reveal po-
tential misunderstandings in the method in-
structions—all with the intention of rem-
edying these before beginning the actual
study.

Stable Materials. Realistically, collabo-
rative studies are performed over the course
of several weeks, as collaborating labora-
tories, which are often commercial analyti-
cal laboratories, adjust their workload to
accommodate the additional assays and pos-
sible new analytical procedures. Therefore,
the stability of additives, reagents, and labo-
ratory samples must account for this ex-
tended time period, with advisement of stor-
age conditions of such materials noted in a
letter of transmittal included with the labo-
ratory samples.

Ingredients for a Successful
Collaborative Study

Rugged analytical procedure
Clearly written protocol

First tested in a pilot study
Stable materials

Test (sub-)samples representa-
tive of the whole

¢ Dedicated collaborators
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Sample Uniformity. To ensure that each
collaborator’s laboratory samples are the
same as those of all other collaborators,
careful attention must be given to their as-
sembly. In cereals studies, the materials are
usually collected first in bulk, which in the
terminology of IUPAC (6) we will refer to
as an “aggregate sample,” then subdivided,
or split, into the requisite size for each labo-

Repeatability

of less concern than the method’s ability to
be consistent, both within the same labora-
tory and among different laboratories. Re-
peatability characterizes within-laboratory
precision, while reproducibility encompasses
this source of variability, and, more impor-
tantly, also includes the variability associated
with method determinations from multiple
laboratories.

—“A measure of how well an analyst in a given laboratory can check
himself using the same analytical method to analyze the same test

sample at the same time” (2).

Reproducibility

—“A measure of how well an analyst in one laboratory can check the results of
another analyst in another laboratory using the same analytical method to
analyze the same test sample at the same or different time” (2).

ratory (i.e., “laboratory sample”). Combin-
ing of ingredients and additives preferably
is done at the bulk level. However, this as-
sumes that a suitable means of mixing to a
uniform consistency is possible. Grain di-
viders should be used if the materials are
in their native state. Because it is the method
and not the materials themselves that are
under evaluation, intense effort should be put
toward uniformity in the laboratory samples
sent to each laboratory. A representative
number of laboratory samples should be
taken at random and tested for uniformity
before distribution to collaborators. Further
attention is required of the collaborator when
the received laboratory sample is reduced
to the size needed for actual analysis, termed
the “test sample,” which is termed the “test
position” during later analytical operations.
Otherwise, unknown levels of variation will
affect the method’s precision.
Collaborators. Participation in a col-
laborative study should come about through
the least level of coercion and with the full
support of the laboratory management. A
willingness to participate in the study is a
good indication that the collaborator will
follow directions and return the requested
data. Relying on a few disinterested collab-
orators who fail to either follow directions
or submit data may place the entire study
in jeopardy due to the failure to meet the
eight-laboratory minimum.

Method Precision

The two terms that have well-defined sta-
tistical meanings when discussing a meth-
od’s precision are “repeatability” and “repro-
ducibility.” By emphasizing these two terms,
an underlying implication is made that al-
though the accuracy of the method, which
can be defined as its closeness in values to
those of some “gold standard,” may be of
importance, the accuracy of the method is

Most often, repeatability is determined
from the analysis of “blind replicates.” As
implied by the name, blind replicates are
laboratory samples, usually two and sel-
dom more than three, for which the col-
laborator is unaware of their identical nature
(i.e., they are from a common aggregate
sample). Acknowledging that this may not
be true, collaborators may recognize the
similarity of two laboratory samples by ap-
pearance or closeness in measured value,
then, without malice, perform actions to
heighten the closeness in their values. To
circumvent this potential problem, the con-
cept of using closely matched, but not truly
identical, pairs, collectively known as “You-
den matched-pairs,” is an alternative ap-
proach (discussed later).

Assuming for the moment a study in
which blind duplicates are used, repeat-
ability and reproducibility can be evaluated
from simple statistical calculations, with
the conventional assumption that repeated
measurements on a laboratory sample are
normally distributed. The repeatability stan-
dard deviation (s,), as evaluated on a blindly
duplicated laboratory sample with a differ-
ence between duplicates of d; for each of n
laboratories, becomes

5, = /idf/Zn o)
i=l

Likewise, the reproducibility standard de-
viation (sg) will be

sR=J(s§+sf)/2 (2)

The first term within the parentheses of the
above expression is determined as

ST -7y
SZ = i=l (3)
4 2n-1)



such that T; represents the sum of the indi-
vidual values within laboratory { and 7 is
the mean over the n laboratories. In its more
general form, in which more than one ma-
terial is used to characterize precision col-
lectively, a two-way ANOVA can be used
(with the usual assumptions of normality
and homogeneity of variances among ag-
gregate samples). We start by stating that
the reproducibility variance is the sum of
three terms: within-laboratory variance (o3),
between-laboratory variance ( o2 ), and labo-
ratoryxsample interaction (o). With
ANOVA, repeatability and reproducibility
standard deviations can be expressed in
terms of their mean squares. For repeat-
ability, this is simply the square root of the
within-laboratory variance:

5, = JMS, @)

r error

Reproducibility is calculated as (13)

1

;(Mslah - Mslabxsnmp]e) +

k=0l (5)
7(MSIabxsampIe - Msermr) + MSerrur
Constants & and r are the number of differ-
ent aggregate samples and number of rep-
licates, respectively. When reproducibility
is based on one duplicate, equation 5 sim-

plifies to

f 1
Sg = E(Mslab + Msen'or) (6)

Both repeatability and reproducibility
standard deviations may be reported in di-
mensionless units by dividing each by its
corresponding mean (across all laborato-
ries), which when represented as a percent
is known as the coefficient of variation
(CV) or relative standard deviation (RSD).
Pictorially, repeatability and reproducibil-
ity can be explained by a two-sample chart,
in which in lieu of the customary plotting
of readings from two close, independent
laboratory samples the readings for dupli-
cates of the same aggregate sample across
many laboratories are plotted in an X-Y
plot (Fig. 2).

The diagonal line represents zero repeat-
ability, such that the perpendicular distances
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Fig. 2. Two-sample chart.

of the points from this line collectively rep-
resent the actual repeatability. Dispersion
in the direction parallel to the diagonal line
represents lab-to-lab variation, which for
small within-laboratory error approximates
the reproducibility error. More often than
not, the intent of the collaborative study is
to quantify the variation across laboratories
(i.e., reproducibility) rather than within a
laboratory (i.e., repeatability). This type of
plot can also be used to visually describe
precision using two close, but slightly dif-
ferent, laboratory samples, instead of du-
plicates (discussed later).

Treatment of Outliers

As often happens, the study director will
be faced with the issue of removing test
portion measurements or entire laborato-
ries from the analysis of precision. Despite
the tests for outliers that we describe be-
low, it is the ultimate responsibility and
judgment of the study director whether to
remove a measurement or entire laboratory
from the analysis. Assuming that all col-
laborators’ data have been collected prop-
erly, an initial comparison of the collabo-
rators can be performed by assigning ranks
to the collaborators (1 to n) for each test
portion measurement and then summing
each collaborator’s ranks over the number
of independent samples studied. A table is
created that lists the measurements for
each independent sample across all col-
laborators along with its rank with respect
to all collaborators (Fig. 3). Collaborators
with tie values are each assigned an aver-
age value for the ranks they would other-
wise occupy if the values were close but
not equal.

By summing each laboratory’s ranks over
all independent samples, it is possible to
determine whether one or more laborato-
ries are consistently low or high with re-
spect to the other laboratories. Ranks may
be compared with confidence levels that

provide the upper and lower limits within
which the ranks lie at a given level of
probability (e.g., 95%). In the example of
the near-infrared prediction of wheat pro-
tein content shown in Fig. 3, we see that
laboratory A, with a summed rank of 5.0,
fell outside the limits of 10 and 45 that
correspond to a 95% confidence interval
(10,11).

TUPAC has adopted a systematic set of
procedures for outlier detection that has been
adopted by AOACI (2). Briefly, a Cochran
test is performed to determine the consis-
tency in levels of within-laboratory vari-
ability of each aggregate sample across all
laboratories (Fig. 4). A laboratory whose
replicate-sample measurements differ by a
statistically significant larger value (typi-
cally applied as a one-tail test at P = 0.025)
is considered a Cochran outlier. The Coch-
ran test statistic is calculated as

replicate  max

s
Cochran test statistic = 100 ———  (7)

2
'Zl srephcale i
i=|

The Variables s%ephca!e i a'nd s?eplica!e max rep_
resent the variance of test portion measure-
ments from laboratory i and the largest
within-laboratory variance over the n labo-
ratories, respectively. Cutoff values for
the Cochran maximum variance ratio (one-
tail, 2.5% rejection level) are tabulated in
AOACT’s guidelines (2).

The second set of outlier tests, know as
Grubbs tests, examines the laboratories for
unusually high or low values for each ag-
gregate sample (Fig. 5). Calculation of the
Grubbs statistic involves determining the
standard deviation of test portion average
measurements across all laboratories and
the standard deviation of the remaining
laboratories when the laboratory with the
lowest average is removed (s;). Likewise,
the standard deviation when the laboratory
with 'the highest average is removed (sg)
is also calculated. The Grubbs statistic be-

For Each Sample: Protein Content (Rank) Sum of

Lab a b c d e Ranks
A |858(1.0) [10.95(1.0) [11.48(1.0) |11.54(1.0) |12.00(1.0) 5.0%
B [893(3.0) [11.25(9.5) |11.59(5.5) |11.81(4.5) |12.09(3.0) 25.5
C |884(20) |11.02(20) [11.58(4.0) |11.89(8.0) |12.06(2.0) 18.0
D [902(8.0) [11.08(3.5) |11.74(8.0) |11.90(9.0) |12.18(4.0) 32.5
E |898(60) |I1L12(50) [11.56(3.0) |[11.81(4.5) [12.26(6.0) 24.5
F |901(7.0) |1L13(6.0) |11.55(2.0) |11.69(2.0) |12.27(8.0) 25.0
G [897(5.0) [11.14(7.0) |11.80(9.0) |11.82(6.0) |12.27(8.0) 35.0
H |911(100) | 11.25(9.5) [11.59(5.5) |[11.97(10.0) | 12.27 (8.0) 43.0
I [894(4.0) [11.24(8.0) |{11.83(10.0) | 11.86(7.0) |12.25(5.0) 34.0
J |909(9.0) |11.08(3.5) |11.69(7.0) |11.77(3.0) |12.28(10.0) 12.5

Fig. 3. Table of collaborators’ measurements and corresponding ranks for five aggregate
samples (near-infrared transmittance predictions of protein content in bulk wheat). Data from
Delwiche and coworkers (4).
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comes the percent decrease in standard de-
viation units when the laboratory with the
most deviant average is removed:

Grubbs test statistic =
s sy (8)
larger of | 100 1»’—’1, 100 1 - 22
s ) SJ

As with the Cochran outlier test. values
tfor the single-value Grubbs outlier (two-
tail, 2.5% rejection level) are tabulated us-
ing AOACI’s guidelines (2). The Grubbs
test is also applied to three additional cases:
removal of the two lowest averages, re-
moval of the two highest averages (as op-
posed to the situation described in equation
8. in which the single lowest or single
highest laboratory is removed), and re-
moval of the lowest and highest laborato-

ries simultaneously. The exact sequence of
testing for outliers is shown in a flowchart
(Fig. 6). IUPAC established the rule that
the removal of outliers should cease if the
fraction of removed laboratories exceeds 2
of 9 of the starting number of laboratories.
Further. the number of retained laborato-
ries should not fall below eight. Finally,
the decision to remove an outlying labora-
tory must be done after careful considera-
tion by the study director upon review of
the collaborator’s notes. In addition to sta-
tistical outliers, measurements may also be
removed for an identifiable reason, such as
a lab deviating [rom the method, a sample
arriving in poor condition, a mistake in la-
beling or recording of the data, etc. Data
such as these are considered invalid and
should not be included in the statistical
analysis.

14.0
S rep
rep 2 -,
/o
5 /
£ 135 |
- \
N \
*
T 130 A
]
j
5]
&
&
&
o 125 4
a5
12.0

Fig. 4. Example of a Cochran outlier.
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Fig. 5. Example of a Grubbs outlier.
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Laboratory

Repeatability Without Blind
Duplicates: Youden Matched-Pairs

To guard against the tendency of ana-
lysts to innocently censor their data on blind
duplicates by negating errant readings and
substituting them with additional analyses.
the late William Youden, then of the Na-
tional Bureau of Standards. suggested that
repeatability could be measured through
the analysis of two close, but slightly dif-
ferent. consignments (although still con-
sidered as one material). We will call the
consignments x and y. and the measure-
ments from laboratory i will be x; and y,.
respectively (12). One motive for this ap-
proach is seen in the two-sample plot (also
known as a Youden plot) shown in Fig. 7.

The construction of this plot differs [rom
that of Fig. 2 in that the 45-degree line, rather
than passing through the origin, is drawn
through the coordinate point that corresponds
to the x and y means of the plotted data. By
requiring that the laboratory samples of a
matched pair are close in value (AOACI
guidelines specify <5% in actual difference),
the measured ditference between the two
results will reflect only the within-labora-
tory (repeatability) random error and the true
difference between the laboratory samples
and not include any systematic error asso-
ciated with the laboratory. Therefore, as
with the case of duplicates, the dispersion
of the points in the direction perpendicular
to the 45-degree line characterizes the re-
peatability of the method.

In recent years. McClure (7) has char-
acterized the statistical design of Youden
matched-pairs as that of a repeated mea-
sures model and has identified the neces-
sary assumptions in the Youden procedure:
1) the reproducibility variances of x and y
(s% and s% ) are equivalent, 2) there is
no interaction between x and y, and 3) the
estimates of method precision are valid only
for the material under study (i.c., the test
sample factor is a fixed effect). With these
assumptions, the expressions for repeatability
and reproducibility, respectively, become

L <
o= i —dy ¢
Kt P @

R (TR (10)

and
S

where 53 =L -DI[Y x? = ()7 /L)
and s} =[I(L-DIXy] = y) /L], A
¢ test at L - 2 degrees of freedom (and a
typical significance level of a = 0.05) is
required for the reproducibility variances.
sk and s3 ., to ensure compliance with
McClure’s first assumption (Part 6, Ap-
pendix D in AOACI OMA Program Man-
ual [3]), in which the following formula is

used to calculate #:
(v‘z‘ o "‘)(L oy
= R R ()

A5 308 1) —cov )77

v

where cov,, = [1/(L— D]|Zxy; - (ZxZv)/L].



Written in the form of an ANOVA
(12)

and

sR = "%(Mslab + Msem)r)

A Spreadsheet Approach to
Precision Calculations

Identifying outliers and calculating pre-
cision parameters by hand can be a daunt-
ing task for the nonstatistician. AQACI
recognized this, and in the early 1990s pro-
vided spreadsheet programs designed to
work with LOTUS 123 and early versions
of Excel to perform the calculations. Al-
though the spreadsheets were functional
and simple to use, the software macro lan-
guage they employed eventually became
obsolete. These early spreadsheets have
since been replaced with updated Excel ver-
sions complete with macros that enhance
the user—program interface. There are two
versions of the spreadsheets, one for blind
replicates and the other for Youden matched-
pairs. In accordance with the current AOACI

(13)

guidelines, the spreadsheets calculate method
performance statistics separately for each
material (aggregate sample) studied.

The appearance of the program for cal-
culation of blind replicates is shown in Fig.
8. Absent from this figure are the interface
windows that guide the user through the
process. Upon opening the program, the
user is prompted to enter the analyte and
aggregate sample ID. The number of repli-
cates (single, duplicate, or triplicate), the
units of measurement, appropriate decimal
format, and recovery (if applicable) are then
entered. Next, the data are entered, the
HORRAT value (not discussed in this ar-
ticle) and collaborative study statistics are
calculated, and outliers are identified. If
outliers are detected, the user manually de-
letes the data from the offending labora-
tory(ies), and the statistics are recalculated.

In the program for Youden matched-pairs,
additional calculations are done to test for
equivalence of variance (equation 11) and
to determine whether the difference in ana-
lyte concentration exceeds 5% between the
members of the pair. Data from up to 100
laboratories can be entered, but currently,
outlier identification is available for only up
to 75. Although the spreadsheet identifies

Outlier Removal

Y

Calculate Cochran Statistic

Cochran Outlying Lab?

Drop Lab Unless Fraction of
Labs Dropped > 20

¥

Calculate Single Grubbs Statistic —\

Caiculate Double
Grubbs Statistic

No Yes
Double Grubbs Outlying

Lab Pair?

Single Grubbs Outlying
Lab?

Drop Lab Unless Fraction of
Labs Dropped > 2/8

Labs Dropped > 2/8

Drop Pair Unless Fraction of

End Outlier
Removal

Fig. 6. Flowchart of outlier removal procedure as adapted by IUPAC (2).
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statistical outliers, the decision to remove the
data remains in the hands of the user.

These programs were developed by J.
M. Lynch with the intention of making the
calculations as easy and robust as possible.
They are available free of charge upon com-
pletion of a licensing agreement (to obtain
copies, contact Joanna M. Lynch at JL72@
cornell.edu).

General Use of ANOVA to Calculate
Precision

ANOVA is routinely used as a statistical
analysis tool in experimentation to exam-
ine treatment differences. ANOVA com-
pares between-treatment variation to within-
treatment variation to determine statistically
significant differences between treatments.
ANOVA can be used to determine if an
analytical method is performing equally
well for all aggregate samples, varieties, or
treatments being tested in a collaborative
study. In accordance with [IUPAC harmo-
nized guidelines for collaborative study pro-
cedures, the previously discussed spread-
sheet program essentially uses a one-way
(single-factor) ANOVA to determine method
performance characteristics for a single ma-
terial. In the following, we present the equiv-
alent analysis using the shorthand format
of ANOVA tables.

In the single-factor ANOVA model table
for a blind duplicates design (Table I), L =
the number of participating labs, and r =
the number of replications of a single (i.e.,
laboratory) sample or treatment sent to each
lab. In the blind duplicates design, r = 2,
and the degrees of freedom for within la-
boratories becomes simply L, and the total
degrees of freedom becomes 2L - 1. The
performance parameter calculations of re-
peatability and reproducibility are obtained
from information provided in the ANOVA
table, such that the repeatability variance
(s?) is MS,, and the reproducibility vari-
ance (5% ) is (MSy + MS,))/2.

In the single-factor ANOVA model table
for a Youden matched-pair design (Table
IT), the within-laboratory variance term from
the blind duplicates model is split into two
components, a replicate effect and a labo-

Fig. 7. Two-sample plot for a Youden
matched-pair.



ratoryxreplicate interaction term. With the
replicate effect removed from the blind du-
plicates within-laboratory variance term, the
laboratoryxreplicate effect becomes the with-
in-laboratory variance term for the Youden
matched-pair model. The replicates in a
Youden matched-pair design are not exact
duplicates of each other as in the blind du-
plicates design. There is error associated
with differences between replicates that is
removed from the within-laboratory vari-
ance component for a Youden matched-pair
model. For this model, the value of ris 2,
because the replicates are still paired; the
degrees of freedom for replicates is 1, and
the degrees of freedom for laboratoryxrep-
licate is L — 1. The performance parameter
estimates for a Youden matched-pair de-
sign ANOVA are calculated exactly the
same way as for a blind duplicates design.
The only difference is that the replicate ef-
fect has been removed from the within-
laboratory variance term used in the You-
den matched-pair calculations.

As an example, assume nine laboratories
are analyzing two replicates of a treated
powder for a mineral detection method col-
laborative study. The first case considers
the two laboratory samples to be blind du-
plicates (Table II1), and the second case con-
siders them (o be Youden matched-pairs
(Table 1V). The calculated performance pa-
rameters between cases are not very differ-
ent in this example, but depending on the
accuracy required for acceptance of a meth-
od, meaningful differences are possible.

The distinctions between the designs be-
come more apparent when treatment dif-
ferences are incorporated into an analysis.
In collaborative studies, it is valuable to
evaluate a method over a variety of materi-
als for greater method applicability. We use
the AOACI term “material” and the statisti-
cal term “treatment” interchangeably. Treat-
ments could be a different matrix, such as
wheat, rye, or corn flour. Treatments could
also be distinct levels of a variable, such as
high protein content or low protein content
in wheat flour alone.

Researchers examine performance pa-
rameters for a particular treatment but of-
ten are also interested in analyzing (reat-
ment differences and ascertaining how the
method performs overall. Factorial ANOV As
can be used to calculate overall treatment
performance parameters of a method, as
well as to determine treatment differences.
The study director will need to check with
the board or committee overseeing collabo-
rative studies (be it within AACC, AOACI,
ISO, or others) to determine whether simul-
taneous analysis of more than one material
is allowed. Due to inherent ANOVA as-
sumptions, statistical tests on the homoge-
neity of variance among materials must be
performed prior to conducting an ANOVA.
Software packages incorporate many types
of statistical tests for variance homogene-
ity, such as Hartley’s F-max, Bartlett’s, and
Levene’s tests (8,9).
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Fig. 8. Spreadsheet program for determination of repeatability and reproducibility and out-
lier testing.

Table L. Single-factor ANOVA model table for a blind duplicates design

Source Degrees of Freedom Sum of Squares Mean Squares
Between labs (L-1) SSi MS;) =SSy /(L—-1)
Within labs L(r-1) SS. MS,,) =SS /Lir-1)
Total Lr-1

Table II. Single-factor ANOVA model table for a Youden matched-pair design

Source Degrees of Freedom Sum of Squares Mean Squares
Between labs (L-1) SSy MSp, = SSp/(L-1)
Replicate (r—=1) SS, MSg = SSp/(r— 1)
LabxRep (L-1(r-1) S8, MS,,; =SS, /(L - 1)(r-1)
Total Lr-1

Table II1. ANOVA model table for blind duplicates design with two replicates

Degrees of Mean
Source Freedom Squares
Between labs 8 35.69
Within labs 9 11.32
Total 17 Overall mean = 37.07 (from ANOVA printout)
s2=MS,, =11.32 s, =3.36 RSD, = 100(3.36/37.07) = 9.06%
sy = (MSy +MS, )2 =23.5 sp=4.85 RSDy = 100(4.85/37.07) = 13.08%

Table IV. ANOVA model table for Youden matched-pair design with two replicates

Degrees of Mean

Source Freedom Squares

Between labs 8 35.69

Replicate |

Within labs 8 10.68

Total 17 Overall mean = 37.07 (from ANOVA printout)
s2=MS,; = 10.68 s,=3.27 RSD, = 100(3.27/37.07) = 8.82%
5% = (MSy + MS,,)/2=23.2 sp=4.82 RSDg = 100(3.27/37.07) = 13.0%
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As a practical and statistical matter, labo-
ratories in collaborative studies are not al-
ways given blind duplicates if treatments
are to be compared, but instead are given
suitably matched replicates (same treatment,
different batches). This situation corresponds
to an extension of a Youden matched-pair
design for more than two replicates. In the
factorial ANOVA table incorporating treat-
ments (Table V), L = the number of par-
ticipating labs, ¢ = the number of treatments
(materials) sent to each lab, and r = the
number of replicates per treatment sent to
each lab. The performance parameter esti-
mates for a factorial ANOVA are calculated
exactly the same way as for the single-fac-
tor Youden matched-pair design. The only
difference is in how the within-laboratory
variance is partitioned. The factorial ANOVA
within-laboratory variance term is labora-
toryxreplicate(treatment).

As mentioned earlier, this type of facto-
rial ANOVA is a repeated-measures design,
where the replicates are nested within treat-
ments. Although the replicates within a treat-
ment are made from different batches, each
laboratory is sent the same replicates. This
reduces the possibility that treatment or
method differences may be mainly due to
differences between the replicates. Because
replicates within a treatment are not exact du-
plicates, replicate error is partitioned out of
the within-laboratory variance component in
the same way as a single-factor ANOVA for
Youden matched-pairs. Further complica-
tions for factorial ANOVA arise when one
considers whether the treatments and labo-
ratories are fixed effects, random effects, or

a combination of effects (a mixed-effects
model). There are differences in F-test de-
nominators used for testing treatment or labo-
ratory differences for each of the different
effects models, but the performance param-
eter calculations are not affected by whether
the model is a fixed-, random-, or mixed-ef-
fects model.

Table VI shows the results for the same
nine laboratories used in the previous ex-
ample, with two replicates per treatment
per lab and an added powder formulation
treatment. The repeatability standard devia-
tion, s,, doesn’t differ much from the analy-
sis of each powder treatment separately,
implying that the method is being performed
consistently for different powders within a

Table V1. Factorial ANOVA table with two replicates per treatment and an added treatment

Degrees of Mean
Source Freedom Squares
Table V. Factorial ANOVA table incorporat-
ing treatments Between labs 8 169.28
Treatment 1
Degrees of Mean LabxTrt 8
Source Freedom Squares Replicate(Trt) 2
¢ 13.
Between labs L-1) MS,, LabxRep(Trt) 16 %
Treatment (t-1) Total 35 Overall mean = 59.7 (from ANOVA printout)
LabxTrt (L-1D)(-1)
Replicate(Trt)  #(r-1) o _ o _ B
LabxRep(Trt)  o(r— IXL-1) MS,, s.=MS,,=13.96 s, =3.74 RSD, = 100(3.74/59.7) = 6.26%
Total Lrt—1 § % = (MSp + MS,)/2 =91.62 sp=9.57 RSDg = 100(9.57/59.7) = 16.0%
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laboratory. The reproducibility standard de-
viation, sg, is larger than the analysis for a
single powder treatment. This may indicate
there is a laboratoryxtreatment interac-
tion, where one or more laboratories are
performing the method differently for each
powder treatment. This can be examined
directly through the factorial ANOVA F
tests.

There are both advantages and disadvan-
tages o using factorial ANOVA for perfor-
mance parameter calculations. The advan-
tages are that researchers can test varietal,
sample, and treatment differences within the
same factorial analysis used to generate the
repeatability and reproducibility estimates
in a collaborative study. In most collabora-
tive studies, there is interest in the scope of
the method over as diverse a test set as
possible.

Using a factorial ANOVA to obtain per-
formance parameter estimates gives a de-
tailed statistical evaluation of a method’s
overall applicability. Examining laboratoryx
treatment interactions to determine whether
one or more laboratories are having prob-
lems with a particular treatment for meth-
odological inconsistencies can identify out-
lier laboratories. One analysis is sufficient
to determine treatment differences and cal-
culate performance parameters instead of a
separate analysis for each treatment.

One disadvantage of a factorial ANOVA
occurs when performance parameters are
desired for each variety or treatment. Other
disadvantages include making sure the cor-
rect model is used and, in the case of blind
replicates, the added computational com-
plications when replicates are not balanced.
[f the goal of a collaborative study is to
show the individual effectiveness of a meth-
od when a wide variety of treatments or
samples are tested, then use of the one-way
ANOVA for each sample is recommended.
If the goal is to show the scope or overall
effectiveness of a method over a wide variety
of treatments, use of a factorial ANOVA is
warranted.

Conclusions

Unified analytical procedures play a vi-
tal role in today’s global cereals and cereal
products market by assuring that accurate
information on nutritional value and func-
tional properties is shared among growers,
processors, and consumers. The underpin-
ning of these procedures is the collabora-
tive, or interlaboratory, study. Although of-
ten lacking in glamour, because by its nature
a collaborative study procedure is often the
verification of a conservative, pretested
method (i.e., the thrill of discovery is ab-
sent), the importance of such a study can-
not be overemphasized.

The AACC Approved Methods Commit-
tee stands as the association’s gatekeeper
on cereals methodology. Through this prim-
er, we hope that cereal chemists, engineers,
and quality-control specialists can gain knowl-
edge and appreciation of AACC’s Approved

Methods and the implied research behind
each approved method.
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